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ABSTRACT

Wild and captive vertebrates face multiple stressors that all
have the potential to induce chronic maternal stress (i.e., sus-
tained, elevated plasma glucocorticoids), resulting in embryo
exposure to elevated maternally derived glucocorticoids. In
oviparous taxa such as fish, maternally derived glucocorti-
coids in eggs are known for their capacity to shape offspring
phenotype. Using a variety of methodologies, scientists have
quantified maternally derived levels of egg cortisol, the primary
glucocorticoid in fishes, and examined the cascading effects of
egg cortisol on progeny phenotype. Here we summarize and
interpret the current state of knowledge on egg cortisol in fishes
and the relationships linking maternal stress/state to egg cortisol
and offspring phenotype/fitness. Considerable variation in levels
of egg cortisol exists across species and among females within a
species; this variation is hypothesized to be due to interspecific
differences in reproductive life history and intraspecific differ-
ences in female condition. Outcomes of experimental studies
manipulating egg cortisol vary both inter- and intraspecifically.
Moreover, while exogenous elevation of egg cortisol (as a proxy
for maternal stress) induces phenotypic changes commonly con-
sidered to be maladaptive (e.g., smaller offspring size), emerging
work in other taxa suggests that there can be positive effects on
fitness when the offspring’s environment is taken into account.
Investigations into (i) mechanisms by which egg cortisol elicits
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phenotypic change in offspring (e.g., epigenetics), (ii) maternal
and offspring buffering capacity of cortisol, and (iii) factors
driving natural variation in egg cortisol and how this variation
affects offspring phenotype and fitness are all germane to
discussions on egg glucocorticoids as signals of maternal stress.

Keywords: oocyte, cortisol, intergenerational effects, pheno-
type, maternal stress, match/mismatch.
1. Introduction

Animals in the wild regularly encounter multiple stressors and
have evolved adaptations to cope with ecological challenges
such as perturbations in the abiotic environment (e.g., fire,
flooding), predators, resource limitation, and intra- and inter-
specific competition (Boonstra 2013). One of the coping mech-
anisms encompassed within the vertebrate stress response is the
activation of the hypothalamic-pituitary-adrenal (HPA) axis in
mammals, birds, and reptiles (see fig. 1 in Boonstra 2013) and
the hypothalamic-pituitary-interrenal (HPI) axis in fishes (Wen-
delaar Bonga 1997; fig. 1A), resulting in the production of glu-
cocorticoids (GCs). The elevation of circulating GCs in response
to an environmental stressor is considered to be adaptive, ini-
tiating physiological and behavioral changes that function to
promote survival (Wingfield et al. 1998; Sapolsky et al. 2000;
McEwen and Wingfield 2003). Accordingly, elevated GCs are
the most pervasive physiological indicator that an animal has
been exposed to a stressor (Cooke and O’Connor 2010). How-
ever, compounded with ecological stressors, wildlife now en-
counter human-induced rapid environmental change (HIREC;
e.g., habitat degradation, climatic change; Sih et al. 2011), and
animals must now cope with novel stressors and unique com-
binations of stressors not previously encountered in their evo-
lutionary history (Sih et al. 2011). Under these circumstances,
energetically costly processes such as reproduction may be sac-
rificed for increased chances of survival, with these trade-offs
being mediated by GCs (Ricklefs and Wikelski 2002). Such
trade-offs not only affect the organism itself but also result in
increased exposure of its offspring to maternal GCs and inter-
generational phenotypic programming (Love et al. 2013).
Populations of fishes regularly encounter stressors and chal-

lenging conditions that can elevate circulating levels of the GC,
cortisol (e.g., predation threat [Rehnberg and Schreck 1987] and
intraspecific competition [Ejike and Schreck 1980]). Stressor ex-
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posure activates the HPI axis, resulting in a biochemical cascade
that initiates at the hypothalamus and concludes in the inter-
renal cells of the head kidney with the synthesis and elevation of
cortisol (fig. 1A). Elevations in circulating cortisol are hypoth-
esized to also elevate egg cortisol in reproductive females (fig. 1C),
with the potential for downstream effects on offspring (fig. 1B).
Marine and freshwater fishes now additionally face novel types
of anthropogenic stressors that are outside their evolutionary
history, including climate change–mediated elevations in water
temperature (e.g., Chadwick et al. 2015), interactions with fish-
eries (e.g., Marçalo et al. 2009), and deteriorated habitats due
to human activities (e.g., sediment loading; Awata et al. 2011).
Domesticated and farmed fishes are also subjected to stressors
associated with husbandry and aquaculture (e.g., handling, con-
finement, and transport [Barton and Iwama 1991] and noise
[Anderson et al. 2011]). These stressors can all elevate circulating
levels of maternal cortisol, which may result in altered offspring
phenotypes via elevations in egg cortisol, calling into question
the ability of the next generation to cope with its environment.
As such, determining the evolutionary role of variation in ma-
ternally derived GCs has become a topic of great interest in the
field of integrative ecology (Sheriff and Love 2013). For exam-
ple, information on variation in egg GCs has the potential to be
translated into metrics of broodstock health and production
quality for aquaculture and stock enhancement initiatives. More-
over, measurements of GCs in wild animals have the potential to
Figure 1. Schematic of effects of maternal stressor exposure and egg cortisol on offspring phenotype. A, Maternal stressor exposure activates
the hypothalamic-pituitary-interrenal (HPI) axis. The hypothalamus releases corticotropin-releasing factor (CRF), which stimulates the
release of adrenocorticotropic hormone (ACTH) from the pituitary. ACTH binds to receptors on the interrenal cells in the head kidney,
initiating a biochemical cascade that results in the synthesis of cortisol. Circulating cortisol binds to glucocorticoid receptors (GRs) on target
tissues and also reaches developing follicles in the female’s ovaries. B, Within the fertilized egg, maternally derived cortisol is thought to bind to
GRs translated from maternally derived GR transcripts. Once bound, the ligand-activated GR is hypothesized to induce changes in the
abundance of embryonic transcripts associated with developmental pathways, resulting in altered offspring phenotype (sec. 3.1). C, Stressor-
induced increases in circulating maternal cortisol can be associated with increased concentrations of ovarian or egg cortisol (I; sec. 5.3).
Maternal transcripts, including transcripts for GRs, also enter the vitellogenic follicle. C, There is evidence for metabolism of cortisol to
cortisone in the thecal/granulosa layer of follicles by 11b-hydroxysteroid dehydrogenase 2 (11bHSD2), as well as metabolism of cortisol to
cortisol and cortisone sulphates by glucocorticoid sulphotransferase (GST; II; sec. 3.2). C, Efflux of cortisol via transmembrane ATP-binding
cassette transporters is also observed in newly fertilized eggs (III; sec. 3.2).
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act as indicators of population stress for conservation practi-
tioners (Madliger and Love 2014; Sopinka et al. 2015b). Despite
research spanning almost two decades, patterns of cortisol in-
vestment in fish eggs have yet to be comprehensively synthesized
and integrated with prevailing assumptions of intergenerational
mechanisms of stress.
Here we synthesize the current knowledge base on the

relationships among maternal stress, maternally derived egg
GCs, and offspring phenotype in fishes. First, we briefly review
research regarding maternal GCs and oviparity in avian sys-
tems, as it can help guide research conducted in fishes (sec. 2).
Next, studies of maternal stress and egg GCs in fishes are re-
viewed, including detailed descriptions of the mechanisms of
action of egg GCs (sec. 3.1) and the metabolism of egg GCs
pre- and postfertilization (sec. 3.2). We then summarize and
interpret literature on cortisol concentrations in fish eggs, fo-
cusing on the cascading effects of natural variation in egg cor-
tisol (sec. 4) and experimentally induced variation in egg cor-
tisol (sec. 5) on offspring phenotype and fitness. Based on this
information, we suggest pertinent avenues of future research
(sec. 6) and provide conclusions (sec. 7).
2. Maternal GCs and Oviparity:
What Do We Know from Birds?

Considerable research within the biomedical realm, showing
that stressor-induced and exogenously manipulated maternal
GCs are robustly linked with maladaptive offspring pheno-
types in humans and rodents (reviewed in Seckl 2004; Cottrell
and Seckl 2009), has guided predictions regarding the effects
of maternal GCs on offspring in nonmammalian taxa such
as birds. After mammals, intergenerational effects of stress are
most extensively studied in birds, whereby maternal GCs are
deposited into eggs (reviewed in Henriksen et al. 2011). The
concentration of egg GCs can vary by timing of breeding and
laying order (Love et al. 2008), and these patterns can addi-
tionally differ by life-history strategy (Love et al. 2009) and
breeding-selection regime (high- and low-plasma GC response
[Hayward et al. 2005] and fast and slow growth [Ahmed et al.
2013]). Importantly, maternal stressor exposure (Okuliarová
et al. 2010) and experimental manipulation of maternal plasma
GCs (Hayward and Wingfield 2004; Love et al. 2005) both result
in eggs with elevated levels of GCs compared to unexposed or
nonmanipulated females. A number of studies have then directly
manipulated egg GCs (as a proxy for maternal stress) to examine
effects on offspring phenotype. For some avian studies, results
align with mammalian models of maternal stress; prenatal (i.e.,
in the egg) exposure to elevated GCs produces offspring with
phenotypes commonly interpreted as maladaptive (e.g., reduced
body size/feather growth [Saino et al. 2005], reduced competitive
ability [Janczak et al. 2006], and reduced begging intensity [Ru-
bolini et al. 2005]). However, as Henriksen et al. (2011) con-
clude, there is notable variation in the directionality of effects
egg GCs have on offspring phenotype (e.g., increased body size
[Tilgar et al. 2016], enhanced flight performance [Chin et al.
2009], and increased begging intensity [Love and Williams 2008]).
In turn, this growing body of literature in avian systems has
supported and enhanced the interpretation of the effects of ma-
ternal GCs on offspring fitness in other oviparous taxa, including
fish.

3. Egg GCs in Fishes

Similar to avian species, GCs (cortisol) in eggs of fishes are
maternally derived (table 1) and are necessary for proper off-
spring development (Nesan and Vijayan 2013a, 2013b). Cor-
tisol, a lipophilic steroid, is reported to be incorporated into
eggs during vitellogenesis, a late stage of oogenesis whereby
glycolipoproteins (e.g., vitellogenins) are taken up by the fol-
licle and processed into yolk (fig. 2; see Brooks et al. 1997;
Jalabert 2005; Lubzens et al. 2010 for further details on teleost
oogenesis). Hormones enter the vitellogenic follicle by dif-
fusion along a concentration gradient (Tagawa et al. 2000) or
possibly via coentry with vitellogenins (Brooks et al. 1997) and
accumulate in the yolk (fig. 2). In vitro incubation of follicles
in media with and without radio-labeled cortisol also suggests
bidirectional movement of cortisol between follicles and ma-
ternal circulation (Tagawa et al. 2000; fig. 2).
While the biochemical and physiological relationships among

cortisol, the stress response (HPI axis; fig. 1A), and reproductive
parameters (e.g., circulating levels of sex steroids, egg size,
fecundity, and fertilization success) in fishes have been exten-
sively addressed (e.g., Iwama et al. 1997; Wendelaar Bonga 1997;
Mommsen et al. 1999; Milla et al. 2009), studies on the inter-
generational effects of stressor-induced GCs in fishes are not as
abundant. Pioneering studies by Campbell et al. (1992, 1994)
found that female salmonids that were chronically stressor ex-
posed had elevated plasma cortisol levels, eggs of smaller size,
and reduced survival of embryonic offspring. Schreck et al. (2001)
were among the first to synthesize known maternal effects of
stress in fishes at a time when there was still limited knowledge
of the intergenerational effects of stress and only a handful of
new studies (e.g., Contreras-Sánchez et al. 1996, 1998; Stratholt
et al. 1997; McCormick 1998). These new studies did, however,
provide important insight into a potential mechanism under-
lying maternal stressor-induced offspring change—namely, el-
evated egg cortisol concentrations. Stressor-induced elevations
in maternal plasma cortisol (and proxies thereof via intraperi-
toneal injection of cortisol; McCormick 1998) can result in hy-
percortisolism of fish eggs (fig. 1C; Stratholt et al. 1997). Since
then, research across species has demonstrated how elevations in
egg cortisol shape offspring phenotype (table 2).
3.1. Mechanisms of Action

When relationships are detected between egg cortisol and off-
spring phenotype, how do these hormonally mediated pheno-
types manifest? In adult fishes, cortisol binds to tissue-specific
GC receptors (GRs), and this intracellular ligand-receptor com-
plex moves to a cell’s nucleus. In the nucleus, the ligand-receptor
complex binds to GC response elements on DNA and induces
transcription (Bury and Sturm 2007). Maternal transcripts for
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GRs are detected in newly fertilized zebrafish (Danio rerio)
eggs, and extensive work on this model species has revealed the
mechanistic actions of maternally derived cortisol and GR tran-
scripts in mediating offspring development (e.g., regulating de-
velopment of the stress axis; Nesan and Vijayan 2013a, 2013b).
Pikulkaew et al. (2011) postulated that in zebrafish, binding
of maternally derived cortisol to GRs, translated from maternal
GR transcripts, was possible shortly after fertilization (fig. 1B).
Recently, Nesan and Vijayan (2016) used microinjection of a
cortisol antibody to sequester maternally derived cortisol from
single-cell zebrafish embryos and found that the cortisol stress
response of embryos 72 h postfertilization was heightened (i.e.,
higher poststressor whole-body cortisol levels compared to con-
trol embryos) and that transcript abundance of HPI axis genes
in embryos 48 h postfertilization was altered (see table 2). The
authors concluded that maternal cortisol is integral to the for-
mation of the stress/HPI axis (Nesan and Vijayan 2016). Fol-
lowing knockdown of GR protein content in zebrafish embryos
using morpholino oligonucleotides, Pikulkaew et al. (2011) and
Nesan et al. (2012) found that growth, swim bladder and cra-
niofacial development, and survival of larval offspring were
altered. In addition, transcript abundance of genes for extra-
cellular matrix remodeling, bone morphogenesis, and myogen-
esis and cell proliferation were also altered in larval offspring
(Pikulkaew et al. 2011; Nesan et al. 2012). Thus, maternal cor-
tisol is thought to affect offspring development via GR signal-
ing effects on transcript abundance (Pikulkaew et al. 2011; Nesan
et al. 2012; Nesan and Vijayan 2013a, 2013b; fig. 1B). Fur-
thermore, knockdown of GR protein content also alters tran-
script abundance and behavioral phenotypes in adult zebra-
fish (Wilson et al. 2015, 2016). Using mutant zebrafish (gr s357)
with nonfunctional GRs, Griffiths et al. (2012) and Ziv et al.
(2013) found that the startle response, locomotor activity, and ex-
ploratory and social behaviors were altered compared to control
fish. Again, these whole-organism changes suggest that effects
of maternally derived cortisol on offspring phenotype are me-
diated by GR signaling (fig. 1B). It is noted that zebrafish have
only a single GR gene. Indeed, Alsop and Vijayan (2009:65)
posit whether other fishes with multiple GR genes (e.g., rainbow
trout [Oncorhynchus mykiss]) “have different mechanisms or abil-
ities to cope with stressors” compared to zebrafish. For example,
in rainbow trout, offspring transcription levels of genes associated
with GRs, nuclear receptor superfamily proteins, and insulin-like
growth factor can be altered when ovarian follicles or eggs are
treated with the GR antagonist Mifepristone/RU486 (Li et al.
2012b; Ferris et al. 2015). Continued extension of the genomic and
physiological tools available for use in zebrafish to other teleost
species is warranted.
Cortisol-mediated epigenetic changes are also thought to

account for changes in offspring phenotype (Li et al. 2010;
Pikulkaew et al. 2011; Nesan and Vijayan 2013a). Drawing
largely on what is known from mammalian literature, Li and
Leatherland (2013) and Love et al. (2013) highlight epigenetic
programming as a viable mechanism whereby maternal stress
or GCs can cause phenotypic change in the offspring of ovip-
arous taxa. Again, GR signaling is implicated in this mech-
anistic pathway, as GRs are subject to maternally mediated
epigenetic programming in mammals (Weaver 2009). In
embryonic three-spined stickleback (Gasterosteus aculeatus),
Mommer and Bell (2014) found that variation in the expres-
sion of DNA methyltransferase and histone genes depended
on whether their mothers were stressor exposed (i.e., under
threat of predation) or left undisturbed. In birds, in ovo injec-
tion of GCs increased DNA methylation of the hypothalamic
GR gene promoter (Ahmed et al. 2014). The interactions
among maternal stress, egg hormones, and epigenetic regulation
are complex, and efforts to further understand the proximate
mechanisms of action of egg cortisol will be relevant in pre-
dicting how early-life effects contribute to phenotypic change of
offspring.
Figure 2. Schematic of oogenesis. I, The previtellogenic follicle is surrounded by a follicular layer comprising thecal and granulosa cells and
contains the germinal vesicle (filled circle). II, During vitellogenesis, yolk proteins (e.g., vitellogenins) are incorporated into the developing
follicle and processed into yolk. Cortisol, a lipophilic steroid, enters the vitellogenic follicle and accumulates in the yolk via diffusion or coen-
try with yolk proteins. The movement of cortisol between the follicle and maternal circulation is thought to be bidirectional. Lipids, vitamins,
and maternal transcripts are also incorporated into the follicle during vitellogenesis. Due to the incorporation of lipids and proteins during
vitellogenesis, the follicle undergoes significant growth. III, Hydration of the follicle occurs postvitellogenesis, whereby water and ions are taken up
into the mature follicle and the germinal vesicle breaks down (dotted circle). Yolk proteins are also hydrolyzed into free amino acids (a.a.).
IV, Following hydration, ovulation occurs, whereby the mature oocyte containing an oil droplet (gray circle) is released from the follicle into
the abdominal cavity. The ovulated oocyte contains nutritional, molecular, and hormonal (e.g., cortisol) components necessary for proper
embryo development. This figure is adapted from Cerdà et al. (2008).
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3.2. Pre- and Postfertilization Metabolism of Egg GCs

In fishes, in vitro and in vivo studies indicate that developing
ovarian follicles, fertilized eggs, and prehatch embryos are
capable of metabolizing steroid hormones, including cortisol.
These findings match what is known in other oviparous taxa
such as birds (Vassallo et al. 2014) and reptiles (Paitz and
Bowden 2013). Based on observations that maternal plasma
cortisol levels are significantly higher than those measured in
eggs and therefore indicative of blood-egg buffering, Schreck
et al. (2001) proposed a progeny-protecting system. Along
with attenuation of maternal HPI activity as sexual matura-
tion progresses (i.e., attenuated plasma cortisol response to a
stressor) and corticosteroid-binding proteins restricting trans-
fer of free cortisol from maternal circulation to eggs, Schreck
et al. (2001) also hypothesized that enzymes capable of metab-
olizing cortisol, such as 11b-hydroxysteroid dehydrogenase 2
(11bHSD2), which metabolizes GCs in the mammalian pla-
centa (Benediktsson et al. 1997), are present in ovarian fol-
licles. Indeed, Tagawa et al. (2000) detected metabolism of
cortisol (to cortisone, the biologically inactive GC in fishes;
Bury and Strum 2007) in the thecal/granulosa layer of tilapia
(Oreochromis mossambicus) follicles following in vitro incu-
bation with radio-labelled cortisol. More recently, Li et al.
(2012a, 2014) showed that rainbow trout ovarian follicles me-
tabolize cortisol to cortisone as well as cortisol and cortisone
sulphates (fig. 1C). Li et al. (2012a, 2014) inferred this metab-
olism to indicate the presence and activity of 11bHSD2 and
GC sulphotransferase (sulfonation as a buffering pathway of
maternally derived steroid hormones in oviparous taxa is re-
viewed in Paitz and Bowden 2013; fig 1C). Indeed, Kusakabe et al.
(2003) detected 11bHSD2 transcripts in the thecal and granu-
losa cells of rainbow trout ovaries and found that transcript
abundance increased throughout sexual maturation/vitellogen-
esis. Recently, Faught et al. (2016) found that 11bHSD2 transcript
abundance in zebrafish follicles also increased following incu-
bation with cortisol in vitro, suggesting that, in response to
maternal stress, there is upregulation of enzymes in ovaries that
reduce cortisol levels in eggs. There are therefore multiple bio-
chemical pathways to examine as potential prefertilization mech-
anisms that control excess cortisol in fish eggs.
Regarding the potential for postfertilization buffering,

Leatherland et al. (2010:102) focused on the interconnectedness
of cortisol and the HPI and HP-ovary axis, concluding that egg
cortisol has “a relatively minor influence on early ontogeny”
and that this may be due in part to the “ability of embryos to
metabolize cortisol to form steroids that have a low biological
activity.” In fishes, the onset of endogenous cortisol produc-
tion in response to a stressor is observed prehatch (Stouthart
et al. 1998), at hatch (Barry et al. 1995; Jentoft et al. 2002), and
at first feeding (Alsop and Vijayan 2008). Other components
of the HPI axis (e.g., upregulation of genes associated with
cortisol production) can be responsive to a stressor before
differences in cortisol are detected (Fuzzen et al. 2011). Yet, in
much-earlier stages of progeny development, steroid hormone
levels are dynamic. Across species, newly fertilized eggs are
able to clear maternally derived cortisol, as indicated by sig-
nificant reductions in cortisol concentrations within 24 h post-
fertilization (e.g., coho salmon [Oncorhynchus kisutch; Sopinka
et al. 2015a], Japanese flounder [Paralichthys olivaceus; de Jesus
et al. 1991], silver carp [Hypophthalmichthys molitrix; Kausar et al.
2013], white sturgeon [Acipenser transmontanus; Simontacchi
et al. 2009], and zebrafish [Nesan and Vijayan 2012]). In rainbow
trout, Li et al. (2012a) found conversion of cortisol to other
metabolites in ovulated oocytes and embryos 25–58 d post-
fertilization (dpf; but see Paitz et al. 2016 for absence of me-
tabolism in embryonic three-spined sticklebacks). However, the
extent of metabolism was less than that observed in ovarian fol-
licles (Li et al. 2012a). Recently, Paitz et al. (2016) found evi-
dence for excretion of cortisol from newly fertilized three-spined
stickleback eggs viaATP-binding cassette transporters (fig. 1C),
which are transmembrane transport proteins associated with
the uptake of xenobiotics in fishes (Luckenbach et al. 2014).
There remains much to be gleaned regarding postfertilization
buffering mechanisms in fishes.
The consensus is that ovarian follicles, eggs, and embryos

are neither “passive recipients of maternal steroids” (Vassallo
et al. 2014:4) nor “passive responders to the levels of steroids
present in eggs” (Paitz and Bowden 2013:6). Moore and John-
ston (2008) address numerous questions regarding the depo-
sition, regulation, and metabolism of yolk steroids in oviparous
taxa. These notions have implications for experimental design
(i.e., sampling time points) and data interpretation. Although
cortisol is thought to accumulate in egg yolk, the capacity for
follicles to metabolize cortisol and for newly fertilized eggs to
transport cortisol out of the embryo demonstrates that if con-
centrations are measured at only one life stage (e.g., unfertilized
eggs), the concentrations represent a snapshot in time of a
fluctuating hormone. Further, GR density and affinity in species
with multiple GRs, as well as the percentage of bound versus
unbound cortisol in maternal circulation, are apt to influence
egg cortisol–mediated effects. These notions can have implica-
tions with regard to the predicted roles of egg cortisol in fishes.
4. Natural Variation in Egg Cortisol

The presence of interindividual variation in egg GCs sets the
stage for natural selection to act on mothers and offspring in
response to environmental variation (Love and Williams 2008).
We focus here on studies that report variation in concentrations
of maternally derived cortisol in ovarian tissue, unfertilized eggs,
and eggs sampled at fertilization.
Maternally derived cortisol is detected in unfertilized and

newly fertilized eggs of many fish species (table 1). Within a
species, variation in egg cortisol content is observed across
studies; egg cortisol levels in rainbow trout range from 5 to
60 ng g21 (table 1). This type of variation is potentially driven
by differences in genetic or environmental factors associated
with different suppliers or strains of females, or laboratory
rearing practices, respectively. Although not frequently reported
in the literature, the absolute ranges of egg cortisol levels detected
among females within a given study can be quite substantial in
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both freshwater (brown trout [Salmo trutta]: 3.22–122.47 ng g21;
Burton et al. 2011) and marine (damselfish [Pomacentrus am-
boinensis]: 0.3–76.0 ng g21; McCormick 1998) species.
4.1. Drivers of Variation

Examining the environmental and ecological drivers of var-
iation in maternal GCs during reproduction, and therefore the
potential for maternally derived GCs to act as maternal signals
(Nesan and Vijayan 2013a) linking mother and offspring envi-
ronments, has become an important focus in studies of maternal
stress (Love et al. 2013;Crossin et al. 2016). For a given study, there
are several questions to consider when hypothesizing what factors
may be influencing interfemale variation in egg cortisol.
1. Does population-specific life history dictate egg cortisol

content, as has been suggested in other taxa (e.g., Love et al.
2009)? Egg cortisol levels vary among geographically distinct
populations of Chinook salmon (Oncorhynchus tshawytscha)
that differ in the distance adultsmigrate from the ocean to reach
freshwater spawning grounds (table 1); egg cortisol levels are
higher in females that swim a longer distance to reach spawn-
ing areas. In Pacific salmon, egg number and size appear to be
selected for on the basis of population-specific migration dis-
tances (Beacham andMurrary 1993). Egg cortisol levels may be
another trait selected for based on population-specific environ-
mental conditions; however, without a greater understanding of
how natural variation in egg cortisol influences offspring phe-
notype, this explanation lacks an evolutionary basis. Egg cortisol
content also varies between farmed and wild stocks of Chinook
salmon (table 1). It is well known that numerous traits vary
between domesticated and wild salmonids (Weber and Fausch
2003). Differences in egg cortisol between farmed andwild stocks
are likely the outcome of selection regimes, but the traits targeted
for selection that are linked with egg cortisol are not presently
known. On a finer spatial scale, cortisol levels detected in laid
clutch masses did not significantly vary between benthic and
limnetic populations of three-spined sticklebacks (Foster et al.
2015). The ecotypes are distinguished by their foraging mode,
and one might predict that a reproductive trait such as egg corti-
sol would not vary between populations. To address these hypoth-
eses, studies quantifying population-specific variation in egg cor-
tisol and relating this variation to variation inmaternal or offspring
fitness are needed.
2. For females that spawn multiple times a year, is egg corti-

sol content contingent on clutch order? Sampath-Kumar et al.
(1995) found that egg cortisol concentrations in newly fertilized
Asian sea bass (Lates calcarifer) eggs varied depending on when
females spawned. Females that spawned in January and Febru-
ary hadmean egg cortisol concentrations of 1.20 and 0.62 ng g21,
respectively. Females that spawned inMarch of the same year had
mean egg cortisol concentrations of 2.20 ng g21. These differ-
ences in egg cortisol of ∼1–1.5 ng g21 could elicit variation in
offspring phenotype, given that differences in egg cortisol of ∼3
ng g21 elicit changes in offspring HPI function (Auperin and
Geslin 2008). The farmed Asian sea bass used by Sampath-
Kumar et al. (1995) spawn year-round. Egg cortisol content may
vary temporally because of fluctuations in female condition, but
what (and how) seasonal influences are modulating female con-
dition are not known.
3. Is egg cortisol content driven by habitat choice? There is

relatively little information currently available to answer this ques-
tion. Due to high variability in ovarian cortisol among females
within a nesting site, McCormick (1998) did not find that dam-
selfish ovarian cortisol varied among different sites on a coral reef.
However, for a given site,120% of the variation in ovarian cortisol
could be accounted for by the density of egg predators, suggesting
that the threat of egg predation may influence egg cortisol levels.
4. Does maternal social status or stress-coping style regulate

egg cortisol content? Egg cortisol content did not differ between
dominant and subordinate zebrafish (Jeffrey and Gilmour 2016).
This was contrary to the authors’ predictions, given that subor-
dinate fish have chronically elevated plasma cortisol (Sloman
et al. 2001) and thus one would expect elevation of egg cortisol
to align with elevated maternal cortisol (Stratholt et al. 1997).
Rainbow trout bred for high and low responsiveness to an acute
stressor yield offspring that differ with regard to yolk sac size
and timing of emergence from spawning gravel (Andersson et al.
2011, 2013). However, egg cortisol content does not differ be-
tween the strains of rainbow trout (Andersson et al. 2011), sug-
gesting that egg cortisol does not appear to be the mechanism
coupling stress-coping style and other traits across generations.
In contrast, Atlantic halibut (Hippoglossus hippoglossus) that
were more resistant to handling (i.e., “unrested” and “requiring
force to keep the fish on the table until it settled”) had lower
concentrations of cortisol in embryos collected 1 dpf (Skaalsvik
et al. 2015:40). This finding suggests that maternal stress-coping
style could be linked with egg cortisol, although comparison of
cortisol levels in unfertilized versus recently fertilized eggs is
required. Overall, the scope of variation among females described
above suggests that allocation of egg cortisol has the potential to
confer some influence on maternal fitness.
4.2. Relationships between Egg Cortisol Variation
and Offspring Phenotype and Fitness

Ascertaining the impacts of variation in maternally derived
GCs on offspring phenotype and fitness is often difficult to
determine, given that underlying costs or benefits of exposure
may be hidden without experimental manipulation (Crossin et al.
2016).As such, a dearthof knowledge still remains tobeuncovered
regarding the connections between interfemale variation in egg
cortisol levels and offspring phenotype and fitness in fishes, es-
pecially since following egg cortisol analyses, embryos are not al-
ways reared long-term. In a coral reef damselfish, across fe-
males, higher concentrations of ovarian cortisol were associated
with shorter larvae (McCormick1998).Asimilar trendappearedto
emerge in sockeye salmon (Oncorhynchus nerka), whereby off-
spring body condition decreased with increasing egg cortisol con-
centration (Sopinka et al. 2014). This same study did not find any
correlation between egg cortisol and fertilization success or em-
bryonic survival (Sopinka et al. 2014). An indication of how var-
iation in cortisol may govern variation in the early development
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of offspring can be gleaned from studies using embryos ∼1 dpf.
The occurrence of yolk sac edema increased with increased
embryo cortisol content (1 dpf) in Atlantic halibut, although
embryo cortisol content did not correlate with other parameters,
including fertilization success and larval size (Skaalsvik et al.
2015). In smallmouth bass (Micropterus dolomieu), eggs were
collected from nests, and eggs with higher cortisol had lower
hatching success in the laboratory (Gingerich and Suski 2011).
Cortisol levels measured in eyed embryos of masu salmon (On-
corhynchus masou) were negatively correlated with survival of a
female’s fertilized eggs to the eyed life stage (Mingist et al. 2007).
Natural variation in egg cortisol thus has the potential to shape
offspring phenotype and fitness, and yet research exploring the
extent to which natural variation in egg cortisol dictates these
offspring parameters later in development is limited. Long-term
rearing of free-swimming offspring can be logistically challeng-
ing and require utilization of a marking system (e.g., passive in-
tegrated transponder or elastomer tagging) if offspring are to be
segregated by maternal identity or egg cortisol content. Further-
more, given that aquatic ecosystems are subject toHIREC, this natu-
rally occurring variationmay be subject to novel selective pressures
and accompanied by new modifications to offspring phenotype.

5. Experimental Manipulation of Egg Cortisol

5.1. Methodologies

Manipulation of egg GCs directly via exposure of eggs or indi-
rectly via manipulating the female enables researchers to separate
correlation from causation and illuminate the evolutionary sig-
nificance of variation in maternally derived GCs (Meylan et al.
2012). There are several methods used to manipulate egg cortisol
levels in vivo. Maternal environments can be altered and egg
cortisol can be quantified (e.g., exposure of females to a physical
stressor [Stratholt et al. 1997; Sopinka et al. 2014; Ghio et al. 2016],
exposure of females to conspecific competition [McCormick 2006,
2009; Jeffrey and Gilmour 2016], and exposure of females to
anthropogenicnoise [Sierra-Flores etal. 2015]).Given that steroids
are lipophilic, egg cortisol concentrations can be indirectly ma-
nipulated with an intraperitoneal injection of cortisol emulsified
incocoabutteroroil(Eriksen et al. 2006). However, caution should
be heeded, as the injection medium itself (rather than the elevated
egg cortisol per se) can also affect offspring size.Hoogenboomet al.
(2011) found that, compared to unmanipulated female brown
trout, egg and offspring size were smaller in females that were
injected intraperitoneally with sham and cortisol-dosed cocoa
butter. For larger-bodied fishes, osmotic pumps implanted into
females offer an alternative to intraperitoneal injections (Kleppe
et al. 2013). Food pellets soaked in cortisol-laced solutions are
a viable option for species that are too small for surgery (e.g.,
zebrafish; Faught et al. 2016). Egg cortisol concentrations can be
directly manipulated with microinjection of cortisol into eggs
(zebrafish; Nesan and Vijayan 2012), bathing of unfertilized eggs
in cortisol-dosed ovarian fluid (brown trout; Sloman 2010), or
bathing of eggs in a cortisol solution at fertilization (coho salmon;
Sopinka et al. 2015a). Each methodology has advantages and dis-
advantages(seeGamperletal.1994;Sopinkaetal.2015b) depending
on the species and question of interest, and care should be taken
when choosing an appropriate tool to manipulate egg cortisol.
5.2. Effects of Experimentally Elevated Egg Cortisol
on Offspring Phenotype and Fitness

The array of phenotypic traits investigated following egg cor-
tisol treatment is substantive, spanning fromgenomic towhole-
animal responses (table 2). Collectively, there does not appear
to be a consistent manner of change in offspring phenotype and
fitness following experimentally elevated egg cortisol (table 2).
For example, the effects of egg cortisol treatment on the size of
offspring at first feeding (i.e., fry), a recognized predictor of
performance in fishes, either are not reported or not detected
or depend on the dose of egg cortisol treatment (table 2). Ag-
gression and dominance are both increased (Sloman 2010;
Sopinka et al. 2015a) and reduced (Burton et al. 2011) in sal-
monids reared from cortisol-treated eggs. Effects of exoge-
nously elevated egg cortisol on activity levels in rainbow trout
offspring vary across ontogeny; at 5 mo postfertilization, off-
spring from cortisol-treated eggs were more active than off-
spring from untreated eggs, but there were no differences in
activity levels at 2 mo postfertilization (Colson et al. 2015). In
Atlantic salmon (Salmo salar), effects of elevated egg cortisol
on offspring response to a confinement stressor were also de-
pendent on age (Eriksen et al. 2011, 2013). Four months post-
hatch, offspring reared from cortisol-manipulated females were
more active during acute confinement compared to offspring
reared from sham females (Eriksen et al. 2013), whereas 1.5-yr-
posthatch offspring reared from cortisol-manipulated eggswere
more inactive during acute confinement compared to controls
(Eriksen et al. 2011). These differencesmay be due to differences
in the time of confinement (20 vs. 30 min) and the size of the
confinement tank (0.5 vs. 1.5 L). On a study-by-study basis,
findings can be argued to be beneficial (e.g., dominance and
increased offspring size) or detrimental (e.g., subordinance and
decreased offspring size). However, without measuring fitness
outcomes of a specific phenotype, phenotype alone cannot be
affirmed as adaptive or maladaptive. Interpretation of the mod-
ified trait as adaptive or maladaptive, in conjunction with the
hypothesis that elevated egg cortisol acts as a maternal signal to
offspring (Nesan andVijayan2013a),must also considerwhether
the environment that offspring encounter or are tested in is
matched ormismatched to thematernal environment (see sec. 6.2).
Effects of elevated egg cortisol on correlates of offspring fitness
(e.g., survival to first feeding) are restricted to early life stages
(table 2). When reported, and with the exception of Li et al.
(2010), elevated egg cortisol does not affect embryonic survival. It
is possible that egg cortisol is affecting genomic or physiological
pathways but not in a manner that results in embryo death.
5.3. Effects of Maternal Stressor-Induced Egg Cortisol
on Offspring Phenotype and Fitness

Despite an enthusiastic interest in determining how elevations
in egg cortisol shape offspring phenotype (table 2), the evidence
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to date indicating that maternal stressor exposure modifies egg
cortisol levels is ambiguous. There are as many studies that
have found differences (e.g., Stratholt et al. 1997; McCormick
2006, 2009; Sierra-Flores et al. 2015) as there are that have not
(e.g., Contreras-Sánchez 1996; Mileva et al. 2010; Sopinka et al.
2014; Jeffrey and Gilmour 2016; Ghio et al. 2016). There are
physiological or biochemical (e.g., maternal and embryonic metab-
olism of cortisol; see sec. 3.2) and logistical (e.g., variation in
stressor type and duration) reasons why a study may or may not
detect differences in egg cortisol.
Variation in ovarian development across species could also

affect incorporation and quantification of cortisol in the eggs
of stressor-exposed females. For synchronous spawning females
who have all eggs developing and ovulating at the same time (e.g.,
salmonids), eggs can be collected from stressor-exposed females
at a single time point postovulation, and variation in cortisol
levels can be interpreted as being stressor induced. However,
the effects of timing of stressor application in relation to vitel-
logenesis and cortisol deposition are not yet clear. Contreras-
Sánchez (1996) did not find variation in egg cortisol or embryo
viability between undisturbed female rainbow trout and females
exposed to a stressor treatment during early vitellogenesis, late
vitellogenesis, or both early and late vitellogenesis. In contrast,
in asynchronous fishes such as the zebrafish, all eggs of all stages
of oogenesis are present in the female, and Faught et al. (2016)
found temporal patterns in egg cortisol deposition in this species
following a 5-d feeding period of cortisol-soaked food pellets.
Accordingly, breeding synchronicity and strategy (reviewed in
McBride et al. 2015), timing of stressor exposure, and timing of
egg collection are important factors to consider when designing
experiments, especially to facilitate comparison across studies.
Another common explanatory denominator threaded through-

out these studies is the possibility that life-history variation could
affect whether and how a female responds to a specific stressor
and whether these responses would be selected for (Love et al.
2009). Accordingly, it is pertinent that (1) a species’ evolutionary
history be thought of a priori and (2) experimental egg ma-
nipulations are altering cortisol to levels that can be detected in
a given species while it is under benign or disturbed conditions
(i.e., within a biologically relevant range; Crossin et al. 2016). It is
important to note that if maternal stressor exposure does not
affect egg cortisol, this does not mean that (1) variation in egg
cortisol doesnothave a role inphenotypic trajectories of offspring
or (2)maternal stressor exposuredoes not affect phenotypic traits
of offspring through other, nonhormonal mechanisms (e.g., epi-
genetics; sec. 3.1).
6. Future Research Directions

Cortisol’s presence and functionality in the egg requires fur-
ther exploration from several perspectives. From a methodo-
logical angle, transparent methods that target assessment of
cortisol in ovarian follicles or tissue, unfertilized eggs, or newly
fertilized eggs will ensure that maternally derived versus en-
dogenous egg cortisol is being assessed and related to offspring
phenotype, allowing for meaningful comparison of findings
across studies. Combining multiple methodologies within a
study is most powerful. For example, Ghio et al. (2016) reared
offspring from female brook trout (Salvelinus fontinalis) fed
cortisol-dosed food, repeatedly handled females, and eggs bathed
in cortisol. There is also scope to investigate how synthetic GCs,
such as the pharmaceutical prednisolone which is detected in
bodies of water, influence offspring phenotype (McNeil et al.
2016). Other areas of future research include (1) conducting
studies that adequately capture intra- and interspecific varia-
tion, (2) rearing and testing offspring in environments that do
and do not match the maternal environment, and (3) assessing
carryover effects on adult offspring phenotype and fitness.
6.1. Quantifying Multiple Levels of Variation

Our current understanding of how variation in egg cortisol
within a female and among females correlates with offspring
phenotypes remains limited, primarily due to low sample sizes
and other logistical constraints (e.g., the difficulty of rearing
maternal lines separately). In brown trout, Suter (2002) found
evidence for intrafemale variation in egg cortisol depending
on position within the ovary (anterior, middle, and posterior).
Offspring phenotype of brown trout was also later found to vary
according to position within the ovary (Burton et al. 2013a), but
these data were not directly linked with egg cortisol. Interfemale
variation in egg cortisol levels can be sizable for some species
(table 1). Does this interfemale variation account for variation in
offspring phenotype? Does this variation relate to variation in
maternal condition? In birds, mothers in lower body condition
are known to lay eggs with higher concentrations of GCs (Love
et al. 2008). Similarly, analyses of female body condition and
concentration of cortisol in unfertilized eggs of Pacific salmon
show increasing egg cortisol with decreasing maternal condition
inwild sockeyesalmon(fig.3).However,nostatisticallysignificant
relationships were detected in coho salmon or farmed Chinook
salmon (fig. 3).
Unresolved questions concerning how different levels of egg

cortisol correlate with offspring phenotype may also be due to
concentration thresholds of egg cortisol. As previously men-
tioned (sec. 5.3), the evidence amassed to date does not uphold
the prevailing hypothesis that maternal stressor exposure con-
sistently increases egg cortisol content in fishes. Moreover, the
relationship between egg cortisol and offspring phenotype may
not always be linear (fig. 4) and is expected to be under evolution-
ary constraints depending on the predictability and variability of
the maternal and offspring environments (Burgess and Marshall
2014). Offspring performance may be optimal within an inter-
mediate range of egg cortisol concentrations and be suboptimal at
lower and higher concentrations of egg cortisol outside the range
(fig. 4A). For example, Li et al. (2010) found nonlinear relation-
ships between egg cortisol and offspring performance in rain-
bow trout. An egg cortisol treatment of 100 ng mL21 (low dose)
resulted in offspring larger than controls (0 ng mL21) and those
reared from eggs treated with 1,000 ng mL21 cortisol (high dose),
which did not differ in size from controls (Li et al. 2010). This
enhanced growth pattern in offspring treated with a low cortisol
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dose was coupled with amplification of insulin-like growth factor
transcripts (Li et al. 2010). Alternatively, there could be a negative
linear relationship between offspring performance and concen-
trations of egg cortisol (fig. 4B; e.g., McCormick 1998). Offspring
performance could also be maintained throughout a range of egg
cortisol concentrations but decrease at concentrations beyond a
specific threshold concentration (fig. 4C; e.g., Eriksen et al. 2006).
When possible, implementation ofmultiple doses of cortisolwhen
experimentally manipulating egg hormone levels can help deter-
mine concentration-dependent phenotypic effects.
Last, although not probed in detail in this article, inter-

specific variation in egg cortisol levels of fishes is also signifi-
cant (table 1). While the reproductive life-history strategies of
fishes are remarkably diverse and researchers have both pre-
dicted and demonstrated that variation in life histories affects
the variability and adaptive potential of egg GCs in other taxa
(Love et al. 2009, 2013; Sheriff and Love 2013), little is known
about whether egg cortisol is associated with this variation in
fishes. For example, among salmonids, there are semelparous
Pacific salmon and iteroparous trout. One may predict that the
buffering capacity of cortisol (sec. 3.2) in Pacific salmon would
be superior to that in trout given that Pacific salmon have only
one opportunity to reproduce before dying. Species undergoing
long-distance migrations for spawning (e.g., Pacific salmon,
American shad [Alosa sapidissima], andPacific herring [Clupea
pallasii]), and arguably a relativelymore stressful reproduction,
may deposit more or less cortisol into eggs compared to non-
migratory species. Species-specific variation in egg cortisol con-
tent may reflect interspecific variation in early offspring life his-
tory and rates of development (e.g., pelagic migration of larval
marine fishes vs. overwinter rearing of juvenile freshwater fishes).
Continuing to uncover answers to these questions regarding
naturally occurring variation in egg cortisol can bolster support
for the hypothesis that GCs act as maternally derived stress sig-
nals (Sheriff and Love 2013). In addition, establishing associa-
tions among maternal condition, egg cortisol, and offspring
performance increases the validity of using egg cortisol as a
metric of broodstock or population health.
6.2. Environmental Matching

From understanding the trajectory of diseases in humans as
predictive adaptive responses (Gluckman and Hanson 2004)
or analyzing the anticipatory parental effects in nonhuman
animals and plants (Uller et al. 2013), there has been a recent
surge in dialogue on the adaptive potential of maternal effects
(i.e., responses of females induce offspring phenotypes that
are deemed to be beneficial in anticipation of future circum-
stances). Dufty et al. (2002) postulated that the maternal en-
docrine system could mediate adaptive effects on offspring
phenotype. Indeed, Meylan et al. (2012) focus on GCs as the
candidate hormone for hormonally mediated maternal effects,
and Sheriff and Love (2013) identify GCs as maternally derived
stress (MDS) signals. Nesan and Vijayan (2013a:40) stated that
the maternal deposition of cortisol and GR transcripts into fish
eggs could serve as a “mechanism for transmitting [information]
from stressedmothers to progeny.” Increasingly, researchers have
proposed that offspring exposure to MDS (via elevated prenatal
GCs) can induceadaptivephenotypicoutcomes in offspring if the
stressful environment inducing MDS in the mother is shared
temporally or spatially byoffspring (i.e., environmentalmatching;
Love and Williams 2008). To test the adaptive potential of MDS
requires an environmentally relevant manipulation of MDS—
that is, raising offspring in a matched stressful environment and
then following fitness in the offspring (Sheriff and Love 2013).
Selection for egg cortisol as an MDS signal will be favored in
species where the maternal environment accurately predicts the
environment of progeny in space or time (Love et al. 2013).
Unfortunately, to date, the effects of elevated egg cortisol on off-
spring phenotype in fishes (table 2) have been predominantly
tested under neutral or benign conditions (i.e., offspring are typ-
ically reared in unmanipulated common-garden environments).
These conditions may be mismatched to the information trans-
mitted via the MDS signal in the egg (i.e., elevated cortisol con-
centrations). There is a great opportunity to enrich our under-
standing of maternal effects by designing experiments that evaluate
and interpret egg hormone–mediated offspring phenotypes in
light of the quality of the offspring’s future environment (see
fig. 1 in Uller et al. 2013).
6.3. Adult Phenotype and Fitness

The majority of studies to date have focused on relationships
between egg cortisol concentrations and offspring phenotype
during early development versus the adult phenotype (table 2).
Figure 3. Log10 cortisol concentration in unfertilized eggs and log10
maternal body condition of Pacific salmon: hatchery coho salmon (On-
corhynchus kisutch; opencircles; Pearson correlation: r2p0.30,np13,
Pp 0.05), farmed Chinook salmon (Oncorhynchus tshawytscha; filled
circles; r2 p 0.10, np 27, Pp 0.10), and wild-caught sockeye salmon
(Oncorhynchus nerka; squares; r2 p 0.26, n p 48, P p 0.0002; line).
Egg cortisol was quantified following Sopinka et al. (2014, 2015a). Ma-
ternal body condition was calculated following Fulton’s condition factor
K: (body mass (g)/fork length (cm)3)21 # 100%. See section 6.1 for
further details.
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There are both logistical (e.g., complexity or expense of rear-
ing offspring to sexual maturity) and phenological reasons for
concentrating on effects of egg cortisol at early life stages. Still,
it is worthwhile to investigate how egg cortisol–mediated effects
on early offspring phenotype correlate with adult phenotype
(and fitness). Phenotypic effects of experimentally elevated egg
cortisol via maternal intraperitoneal injection were detected in
farmed Atlantic salmon 1.5–2 yr after hatching (e.g., cranio-
facial and tissue abnormalities and reactivity to a confinement
stressor; Eriksen et al. 2011, 2013). Egg cortisol–mediated effects
may restrict phenotypic flexibility, and the offspring phenotype
programmed early in life by egg cortisol titers may persist to
adulthood. For example, exogenously elevating egg cortisol can
reduce offspring size in salmonids (table 2), which may be linked
with changes to growth early in embryogenesis (Li et al. 2010), and
juvenile growth rates correlate with adult reproductive success
(e.g., offspring survival; Burton et al. 2013b). However, the adult
phenotype is likely an interaction between early-life hormonal
influences (i.e., egg cortisol concentration ormaternal signal) and
the environment (see fig. 1 in Dufty et al. 2002). Evaluating how
egg cortisol affects the phenotype of adult offspring will fill a
current knowledge gap, but discerning the legacy effects of egg
cortisol may be difficult due to inherent genetic effects and accu-
mulating environmental input. Given that little information is
available regarding the long-term effects of offspring exposure
to elevated egg cortisol, it is perhaps not surprising that limited
research has been conducted linking these effects to variation in
adult fitness (e.g., survival to sexual maturation, age at reproduc-
tion, and gamete quality).
7. Conclusion

Glucocorticoids in the eggs of oviparous animals such as fish
are not physiologically static entities; levels vary within and
across mothers as well as across species. While the environ-
mental and ecological pressures driving variation in GC con-
centrations remain elusive, this variation exerts diverse effects
on biological functions of developing offspring, which have the
potential to interact with environmental variation to contextually
impact offspring fitness. An individual egg is but a fraction of a
fish’s mass, yet the contents of these globular morsels are the
building blocks progeny are given to develop, grow, and survive to
independence. To fully appreciate the phenotypic effects of egg
GCsontheoffspringoffishes, there are anumberof theoretical and
experimental factors to encompass into future scientific inquiry.
An integrative approach to examining how egg GCs affect off-
spring phenotype can yield valuable insights into hormonally
mediated intergenerational processes and population fitness.
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